scvelo - RNA velocity generalized through dynamical modeling
API¶
Import scVelo as:
import scvelo as scv
After reading the data (scv.read
) or loading an in-built dataset (scv.datasets.*
),
the typical workflow consists of subsequent calls of
preprocessing (scv.pp.*
), analysis tools (scv.tl.*
) and plotting (scv.pl.*
).
Further, several utilities (scv.utils.*
) are provided to facilitate data analysis.
Read / Load¶
read (filename[, backed, sheet, ext, …]) |
Read file and return AnnData object. |
read_loom (filename, *[, sparse, cleanup, …]) |
Read .loom-formatted hdf5 file. |
Preprocessing (pp)¶
Basic preprocessing (gene selection and normalization)
pp.filter_genes (data[, min_counts, …]) |
Filter genes based on number of cells or counts. |
pp.filter_genes_dispersion (data[, flavor, …]) |
Extract highly variable genes. |
pp.normalize_per_cell (data[, …]) |
Normalize each cell by total counts over all genes. |
pp.log1p (data[, copy]) |
Logarithmize the data matrix. |
pp.filter_and_normalize (data[, min_counts, …]) |
Filtering, normalization and log transform |
Moments (across nearest neighbors in PCA space)
pp.pca (data[, n_comps, zero_center, …]) |
Principal component analysis [Pedregosa11]. |
pp.neighbors (adata[, n_neighbors, n_pcs, …]) |
Compute a neighborhood graph of observations. |
pp.moments (data[, n_neighbors, n_pcs, mode, …]) |
Computes moments for velocity estimation. |
Tools (tl)¶
Clustering and embedding (more at scanpy-docs)
tl.louvain (adata[, resolution, …]) |
Cluster cells into subgroups [Blondel08] [Levine15] [Traag17]. |
tl.umap (adata[, min_dist, spread, …]) |
Embed the neighborhood graph using UMAP [McInnes18]. |
Velocity estimation
tl.velocity (data[, vkey, mode, fit_offset, …]) |
Estimates velocities in a gene-specific manner. |
tl.velocity_graph (data[, vkey, xkey, tkey, …]) |
Computes velocity graph based on cosine similarities. |
tl.velocity_embedding (data[, basis, vkey, …]) |
Projects the single cell velocities into any embedding. |
Dynamical modeling
tl.recover_dynamics (data[, var_names, …]) |
Recovers the full splicing kinetics of specified genes. |
tl.differential_kinetic_test (data[, …]) |
Test to detect cell types / lineages with different kinetics. |
Dynamical genes
tl.rank_velocity_genes (data[, vkey, …]) |
Rank genes for velocity characterizing groups. |
tl.rank_dynamical_genes (data[, n_genes, …]) |
Rank genes by likelihoods per cluster/regime. |
Pseudotime and trajectory inference
tl.terminal_states (data[, vkey, modality, …]) |
Computes terminal states (root and end points). |
tl.velocity_pseudotime (adata[, vkey, …]) |
Computes a pseudotime based on the velocity graph. |
tl.latent_time (data[, vkey, min_likelihood, …]) |
Computes a gene-shared latent time. |
tl.paga (adata[, groups, vkey, …]) |
PAGA graph with velocity-directed edges. |
Further tools
tl.velocity_clusters (data[, vkey, …]) |
Computes velocity clusters via louvain on velocities. |
tl.velocity_confidence (data[, vkey, copy]) |
Computes confidences of velocities. |
tl.score_genes_cell_cycle (adata[, s_genes, …]) |
Score cell cycle genes. |
Plotting (pl)¶
Base scatter plot
pl.scatter ([adata, basis, x, y, vkey, …]) |
Scatter plot along observations or variables axes. |
Velocity embeddings
pl.velocity_embedding (adata[, basis, vkey, …]) |
Scatter plot of velocities on the embedding. |
pl.velocity_embedding_grid (adata[, basis, …]) |
Scatter plot of velocities on a grid. |
pl.velocity_embedding_stream (adata[, basis, …]) |
Stream plot of velocities on the embedding. |
Velocity graph
pl.velocity (adata[, var_names, basis, vkey, …]) |
Phase and velocity plot for set of genes. |
pl.velocity_graph (adata[, basis, vkey, …]) |
Plot of the velocity graph. |
pl.paga (adata[, basis, vkey, color, layer, …]) |
Plot PAGA graph with velocity-directed edges. |
Further plotting
pl.proportions (adata[, groupby, layers, …]) |
Plot pie chart of spliced/unspliced proprtions. |
pl.heatmap (adata, var_names[, sortby, …]) |
Plot time series for genes as heatmap. |
pl.hist (arrays[, alpha, bins, color, …]) |
Plot a histogram. |
Datasets¶
datasets.pancreas ([file_path]) |
Pancreatic endocrinogenesis |
datasets.dentategyrus ([file_path, adjusted]) |
Dentate Gyrus neurogenesis. |
datasets.forebrain ([file_path]) |
Developing human forebrain. |
datasets.dentategyrus_lamanno ([file_path]) |
Dentate Gyrus neurogenesis. |
datasets.gastrulation ([file_path]) |
Mouse gastrulation. |
datasets.gastrulation_e75 ([file_path]) |
Mouse gastrulation subset to E7.5. |
datasets.gastrulation_erythroid ([file_path]) |
Mouse gastrulation subset to erythroid lineage. |
datasets.bonemarrow ([file_path]) |
Human bone marrow. |
datasets.pbmc68k ([file_path]) |
Peripheral blood mononuclear cells. |
datasets.simulation ([n_obs, n_vars, alpha, …]) |
Simulation of mRNA splicing kinetics. |
Utils¶
Get data by key
get_df (data[, keys, layer, index, columns, …]) |
Get dataframe for a specified adata key. |
Get gene info
utils.gene_info (name[, fields]) |
Retrieve gene information from biothings client. |
Data preparation
utils.cleanup (adata[, clean, keep, inplace]) |
Delete not needed attributes. |
utils.clean_obs_names (adata[, alphabet, …]) |
Clean up the obs_names. |
utils.merge (adata, ldata[, copy]) |
Merge two annotated data matrices. |
utils.show_proportions (adata[, layers, use_raw]) |
Proportions of abundances of modalities in layers. |
Getters
utils.get_moments (adata[, layer, …]) |
Computes moments for a specified layer. |
utils.get_transition_matrix (adata[, vkey, …]) |
Computes cell-to-cell transition probabilities |
utils.get_cell_transitions (adata[, …]) |
Simulate cell transitions |
utils.get_extrapolated_state (adata[, vkey, …]) |
Get extrapolated cell state. |
Converters
utils.convert_to_ensembl ([gene_names]) |
Retrieve ensembl IDs from a list of gene names. |
utils.convert_to_gene_names ([ensembl_names]) |
Retrieve gene names from ensembl IDs. |
Least squares and correlation
utils.leastsq (x, y[, fit_offset, perc, …]) |
Solves least squares X*b=Y for b. |
utils.vcorrcoef (X, y[, mode, axis]) |
Pearsons/Spearmans correlation coefficients. |
utils.test_bimodality (x[, bins, kde, plot]) |
Test for bimodal distribution. |
Settings¶
set_figure_params ([style, dpi, dpi_save, …]) |
Set resolution/size, styling and format of figures. |